In recent years, using a self-supervised learning framework to learn the general characteristics of graphs has been considered a promising paradigm for graph representation learning. The core of self-supervised learning strategies for graph neural networks lies in constructing suitable positive sample selection strategies. However, existing GNNs typically aggregate information from neighboring nodes to update node representations, leading to an over-reliance on neighboring positive samples, i.e., homophilous samples; while ignoring long-range positive samples, i.e., positive samples that are far apart on the graph but structurally equivalent samples, a problem we call "neighbor bias." This neighbor bias can reduce the generalization performance of GNNs. In this paper, we argue that the generalization properties of GNNs should be determined by combining homogeneous samples and structurally equivalent samples, which we call the "GC combination hypothesis." Therefore, we propose a topological signal-driven self-supervised method. It uses a topological information-guided structural equivalence sampling strategy. First, we extract multiscale topological features using persistent homology. Then we compute the structural equivalence of node pairs based on their topological features. In particular, we design a topological loss function to pull in non-neighboring node pairs with high structural equivalence in the representation space to alleviate neighbor bias. Finally, we use the joint training mechanism to adjust the effect of structural equivalence on the model to fit datasets with different characteristics. We conducted experiments on the node classification task across seven graph datasets. The results show that the model performance can be effectively improved using a strategy of topological signal enhancement.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
知识蒸馏(KD)显示了其对象检测的有效性,在AI知识(教师检测器)和人类知识(人类专家)的监督下,它在该物体检测中训练紧凑的对象检测器。但是,现有研究一致地对待AI知识和人类知识,并在学习过程中采用统一的数据增强策略,这将导致对多尺度对象的学习有偏见,并且对教师探测器的学习不足,从而导致不满意的蒸馏性能。为了解决这些问题,我们提出了特定于样本的数据增强和对抗性功能增强。首先,为了减轻多尺度对象产生的影响,我们根据傅立叶角度的观察结果提出了自适应数据增强。其次,我们提出了一种基于对抗性示例的功能增强方法,以更好地模仿AI知识以弥补教师探测器的信息不足。此外,我们提出的方法是统一的,并且很容易扩展到其他KD方法。广泛的实验证明了我们的框架的有效性,并在一阶段和两阶段探测器中提高了最先进方法的性能,最多可以带来0.5 MAP的增长。
translated by 谷歌翻译
通常通过过去的选择来告知机器学习中的评估,例如要使用哪些数据集或指标。该标准化可以使用排行榜对平等基础进行比较,但是随着出现更好的替代方案,评估选择变得不佳。这个问题在自然语言生成中尤其相关,该语言需要不断改善的数据集,指标和人类评估以提出确定性的主张。为了使遵循最佳模型评估实践更加容易,我们介绍了GEMV2。新版本的一代,评估和指标基准为数据集,模型和指标开发人员提供了模块化基础架构,以使彼此受益。GEMV2支持40种记录的数据集中51种语言。所有数据集的模型都可以在线评估,我们的交互式数据卡创建和渲染工具使得在Living Benchmark中添加新数据集变得更加容易。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译
我们提出了使用轨迹数据来学习未知无源动力学系统的音量扩展网络(VPNET)。我们提出了三个模块,并将它们组合在一起以获得两个网络体系结构,即创建的R-VPNET和LA-VPNET。所提出的模型的独特特征是它们是固有的卷积保护。另外,证明了相应的近似定理,从理论上讲,这些定理可以保证所提出的VPNET学习无源动力学的表现。数值实验证明了VP-NET的有效性,概括能力和结构保存特性。
translated by 谷歌翻译
Text summarization is a user-preference based task, i.e., for one document, users often have different priorities for summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between the summary and source document. However, developing systems that can generate summaries with customizable semantic coverage is still an under-explored topic. In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum. We take events as the basic semantic units of the source documents and propose to rank these events by their salience. We also develop a model to summarize input documents with given events as anchors and hints. By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner. Meanwhile, we annotate a new benchmark GranuDUC that contains multiple summaries at different granularities for each document cluster. Experimental results confirm the substantial superiority of GranuSum on multi-granularity summarization over strong baselines. Further, by exploiting the event information, GranuSum also exhibits state-of-the-art performance under the conventional unsupervised abstractive setting. Dataset for this paper can be found at: https://github.com/maszhongming/GranuDUC
translated by 谷歌翻译
Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
Offline reinforcement learning (RL) concerns pursuing an optimal policy for sequential decision-making from a pre-collected dataset, without further interaction with the environment. Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators, especially to handle the case with excessively large state-action spaces. Among them, the framework based on the linear-programming (LP) reformulation of Markov decision processes has shown promise: it enables sample-efficient offline RL with function approximation, under only partial data coverage and realizability assumptions on the function classes, with favorable computational tractability. In this work, we revisit the LP framework for offline RL, and advance the existing results in several aspects, relaxing certain assumptions and achieving optimal statistical rates in terms of sample size. Our key enabler is to introduce proper constraints in the reformulation, instead of using any regularization as in the literature, sometimes also with careful choices of the function classes and initial state distributions. We hope our insights further advocate the study of the LP framework, as well as the induced primal-dual minimax optimization, in offline RL.
translated by 谷歌翻译
Video representation learning has been successful in video-text pre-training for zero-shot transfer, where each sentence is trained to be close to the paired video clips in a common feature space. For long videos, given a paragraph of description where the sentences describe different segments of the video, by matching all sentence-clip pairs, the paragraph and the full video are aligned implicitly. However, such unit-level similarity measure may ignore the global temporal context over a long time span, which inevitably limits the generalization ability. In this paper, we propose a contrastive learning framework TempCLR to compare the full video and the paragraph explicitly. As the video/paragraph is formulated as a sequence of clips/sentences, under the constraint of their temporal order, we use dynamic time warping to compute the minimum cumulative cost over sentence-clip pairs as the sequence-level distance. To explore the temporal dynamics, we break the consistency of temporal order by shuffling the video clips or sentences according to the temporal granularity. In this way, we obtain the representations for clips/sentences, which perceive the temporal information and thus facilitate the sequence alignment. In addition to pre-training on the video and paragraph, our approach can also generalize on the matching between different video instances. We evaluate our approach on video retrieval, action step localization, and few-shot action recognition, and achieve consistent performance gain over all three tasks. Detailed ablation studies are provided to justify the approach design.
translated by 谷歌翻译